Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 342: 118233, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37276616

RESUMO

Recycling nutrients helps to reduce the environmental impact of agriculture and contributes to alleviating the effects of global climate change. A recent trend in sugarcane cultivation is the application of concentrated vinasse (CV) combined with fertilizers into an organo-mineral formulation to improve logistics, reduce costs and foster the circular economy. However, the implications of the application of such organo-mineral formulation in sugarcane fields are unclear. In this study, we evaluated the effects of the organo-mineral formulation containing granular urea (UR), and a nitrification inhibitor (NI) on crop yields, NH3 volatilization, and N2O emissions. Field experiments were conducted during two fertilization seasons, dry and wet, and the treatments were: control; UR; UR + NI; CV; CV + UR; and CV + UR + NI. CV was applied at 7 m3 ha-1. The treatments (except control and CV) were balanced to receive the same amount of N and K. Compared with UR, the organo-mineral formulation of CV + UR decreased NH3 volatilization losses from 7% to 4% in the dry season and from 3.5% to 0.5% in the wet season. Conversely, compared with UR, N2O emissions increased significantly (p ≤ 0.05) in CV + UR in the wet season from 1% to 2% of applied N. In the dry season, no differences were observed. The addition of NI was effective in mitigating N2O emissions in both seasons. Emission reductions ranged from 43 to 48% in the dry season and from 71 to 84%, in the wet season. Fertilization with UR or the organo-mineral formulation influenced sugarcane yield only in the dry season, with the highest yield in CV + UR. NI did not affect crop yield. In general, emission intensities (kg CO2eq Mg-1 of stalk) were highest in CV + UR. We conclude that the organo-mineral formulation reduced NH3 losses and increased N2O emissions compared with regular solid fertilizer and that NI was effective for mitigating N2O emissions.


Assuntos
Agricultura , Fertilizantes , Saccharum , Grão Comestível/química , Fertilizantes/análise , Nitrogênio , Óxido Nitroso/análise , Solo , Ureia , Volatilização
2.
Glob Chang Biol ; 26(3): 1820-1832, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31730282

RESUMO

To meet rising demands for agricultural products, existing agricultural lands must either produce more or expand in area. Yield gaps (YGs)-the difference between current and potential yield of agricultural systems-indicate the ability to increase output while holding land area constant. Here, we assess YGs in global grazed-only permanent pasture lands using a climate binning approach. We create a snapshot of circa 2000 empirical yields for meat and milk production from cattle, sheep, and goats by sorting pastures into climate bins defined by total annual precipitation and growing degree-days. We then estimate YGs from intra-bin yield comparisons. We evaluate YG patterns across three FAO definitions of grazed livestock agroecosystems (arid, humid, and temperate), and groups of animal production systems that vary in animal types and animal products. For all subcategories of grazed-only permanent pasture assessed, we find potential to increase productivity several-fold over current levels. However, because productivity of grazed pasture systems is generally low, even large relative increases in yield translated to small absolute gains in global protein production. In our dataset, milk-focused production systems were found to be seven times as productive as meat-focused production systems regardless of animal type, while cattle were four times as productive as sheep and goats regardless of animal output type. Sustainable intensification of pasture is most promising for local development, where large relative increases in production can substantially increase incomes or "spare" large amounts of land for other uses. Our results motivate the need for further studies to target agroecological and economic limitations on productivity to improve YG estimates and identify sustainable pathways toward intensification.


Assuntos
Agricultura , Clima , Animais , Bovinos , Gado , Carne , Ovinos
3.
Environ Microbiol ; 21(4): 1241-1254, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30735001

RESUMO

The nitrification inhibitors (NIs) 3,4-dimethylpyrazole (DMPP) and dicyandiamide (DCD) can effectively reduce N2 O emissions; however, which species are targeted and the effect of these NIs on the microbial nitrifier community is still unclear. Here, we identified the ammonia oxidizing bacteria (AOB) species linked to N2 O emissions and evaluated the effects of urea and urea with DCD and DMPP on the nitrifying community in a 258 day field experiment under sugarcane. Using an amoA AOB amplicon sequencing approach and mining a previous dataset of 16S rRNA sequences, we characterized the most likely N2 O-producing AOB as a Nitrosospira spp. and identified Nitrosospira (AOB), Nitrososphaera (archaeal ammonia oxidizer) and Nitrospira (nitrite-oxidizer) as the most abundant, present nitrifiers. The fertilizer treatments had no effect on the alpha and beta diversities of the AOB communities. Interestingly, we found three clusters of co-varying variables with nitrifier operational taxonomic units (OTUs): the N2 O-producing AOB Nitrosospira with N2 O, NO3 - , NH4 + , water-filled pore space (WFPS) and pH; AOA Nitrososphaera with NO3 - , NH4 + and pH; and AOA Nitrososphaera and NOB Nitrospira with NH4 + , which suggests different drivers. These results support the co-occurrence of non-N2 O-producing Nitrososphaera and Nitrospira in the unfertilized soils and the promotion of N2 O-producing Nitrosospira under urea fertilization. Further, we suggest that DMPP is a more effective NI than DCD in tropical soil under sugarcane.


Assuntos
Archaea/efeitos dos fármacos , Guanidinas/farmacologia , Nitrosomonadaceae/efeitos dos fármacos , Óxido Nitroso/metabolismo , Microbiologia do Solo , Amônia/metabolismo , Archaea/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Fertilizantes/análise , Nitrificação/efeitos dos fármacos , Nitrosomonadaceae/genética , Oxirredução , Pirazóis/farmacologia , RNA Ribossômico 16S/genética , Solo/química , Clima Tropical
4.
Sci Rep ; 6: 30349, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27460335

RESUMO

Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4(+)-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane.


Assuntos
Amônia/metabolismo , Fertilizantes/efeitos adversos , Gases de Efeito Estufa/química , Microbiota , Óxido Nitroso/análise , Microbiologia do Solo , Ciclo do Nitrogênio , Fixação de Nitrogênio , Óxido Nitroso/metabolismo , Solo/química , Clima Tropical , Ureia/metabolismo
5.
J Environ Qual ; 44(2): 423-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26023961

RESUMO

The environmental benefits of producing biofuels from sugarcane have been questioned due to greenhouse gas emissions during the biomass production stage, especially nitrous oxide (NO) associated with nitrogen (N) fertilization. The objective of this work was to evaluate the use of nitrification inhibitors (NIs) dicyandiamide (DCD) and 3,4 dimethylpyrazole phosphate (DMPP) and a controlled-release fertilizer (CRF) to reduce NO emissions from urea, applied at a rate of 120 kg ha of N. Two field experiments in ratoon cycle sugarcane were performed in Brazil. The treatments were (i) no N (control), (ii) urea, (iii) urea+DCD, (iv) urea+DMPP, and (v) CRF. Measurements of NO fluxes were performed using static chambers with four replications. The measurements were conducted three times per week during the first 3 mo and biweekly afterward for a total of 217 and 382 d in the first and second seasons, respectively. The cumulative NO-N emissions in the first ratoon cycle were 1098 g ha in the control treatment and 1924 g ha with urea (0.7% of the total N applied). Addition of NIs to urea reduced NO emissions by more than 90%, which did not differ from those of the plots without N. The CRF treatment showed NO emissions no different from those of urea. The results were similar in the second ratoon: the treatment with urea showed NO emissions of 0.75% of N applied N. Application of NIs resulted in a strong reduction in NO emissions, but CRF increased emissions compared with urea. We therefore conclude that both NIs can be options for mitigation of greenhouse gas emission in sugarcane used for bioenergy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...